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Abstract Identifying high performing hybrids is an essen-

tial part of every maize breeding program. Genomic predic-

tion of maize hybrid performance allows to identify promising

hybrids, when they themselves or other hybrids produced

from their parents were not tested in field trials. Using simu-

lations, we investigated the effects of marker density (10, 1,

0.3 marker per mega base pair, Mbp-1), convergent or

divergent parental populations, number of parents tested in

other combinations (2, 1, 0), genetic model (including popu-

lation-specific and/or dominance marker effects or not), and

estimation method (GBLUP or BayesB) on the prediction

accuracy. We based our simulations on marker genotypes of

Central European flint and dent inbred lines from an ongoing

maize breeding program. To simulate convergent or divergent

parent populations, we generated phenotypes by assigning

QTL to markers with similar or very different allele fre-

quencies in both pools, respectively. Prediction accuracies

increased with marker density and number of parents tested

and were higher under divergent compared with convergent

parental populations. Modeling marker effects as population-

specific slightly improved prediction accuracy under lower

marker densities (1 and 0.3 Mbp-1). This indicated that

modeling marker effects as population-specific will be most

beneficial under low linkage disequilibrium. Incorporating

dominance effects improved prediction accuracies consider-

ably for convergent parent populations, where dominance

results in major contributions of SCA effects to the genetic

variance among inter-population hybrids. While the general

trends regarding the effects of the aforementioned influence

factors on prediction accuracy were similar for GBLUP and

BayesB, the latter method produced significantly higher

accuracies for models incorporating dominance.

Introduction

While genetic progress in maize breeding is made through

development of improved inbred lines, the main focus is on

the F1 hybrid progeny between two such lines, as the final,

marketable product. Identifying high performing hybrids is

therefore an integral part of every maize breeding program.

However, because field evaluation of all potential hybrids

is way too resource intensive, only a small subset can

actually be tested in field trials.

Bernardo (1996) proposed best linear unbiased prediction

(BLUP) for performance prediction of untested hybrids. This

is achieved by exploiting the genetic covariance between

tested and untested hybrids. The covariance can be estimated

from pedigree (Bernardo 1996) or from molecular marker data

(Maenhout et al. 2010). The latter approach can be seen in

close analogy to genomewide BLUP (GBLUP), first proposed

by Meuwissen et al. (2001) for estimation of marker effects

for prediction of breeding values. Later, GBLUP was shown to

be equivalent to traditional BLUP of breeding values when the

pedigree-derived relationship matrix is replaced with one

derived from marker data (Goddard 2009). Meuwissen et al.

(2001) proposed two Bayesian methods, named Bayes A and

B, as powerful alternatives to GBLUP. While their superiority

over GBLUP for highly polygenic traits could so far not
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conclusively be demonstrated, there is clear evidence for their

advantage when the trait is controlled by a finite number of

loci (Hayes et al. 2010; Clark et al. 2011; Meuwissen and

Goddard 2010). Recently, Yang and Tempelman (2012)

proposed improvements and extensions to Bayes A and B. The

utility of these Bayesian methods was so far not investigated

for hybrid prediction.

An important component of hybrid performance is the

specific combining ability (SCA) between the parental lines of

a hybrid. Thus, not only additive but also dominance effects of

markers have to be estimated to account for the entire genetic

variance. A further complication is that the parental lines in

hybrid breeding are taken from genetically distant populations

to maximize exploitation of heterosis. In Central Europe these

are the ‘‘dent’’ and the ‘‘flint’’ populations, which were sepa-

rated for more than 500 years (Stich et al. 2007). During this

time, linkage between markers and QTL will have dissipated

and possibly changed in sign (Charcosset and Essioux 1994)

and QTL allele frequencies can have drifted into different

directions. Hence, it might be necessary to model the marker

effects as specific to a population.

Simulation studies have proven to be a powerful tool in

comparisons of biometric models and methods for genomic

prediction, because the true genotypic values, and the effects,

positions and allele frequencies of the underlying QTL, as

well as the LD between QTL and markers are known. This

allows to investigate the effects of marker density and genetic

architecture of traits as well as other factors relevant for

genomic prediction. However, important idiosyncrasies of

real-world data sets are hard to mirror in simulations. This

often hampers the extrapolation of the results to the real world.

Following the example of Zhong et al. (2009), we therefore

simulated the QTL onto the observed marker profiles of

existing genotypes from an actual maize breeding program.

Our objectives were to compare (i) biometric models that

differ in inclusion of dominance and population-specific

marker effects with regard to their performance for genomic

predictions of hybrids, (ii) the utility of the marker effect

estimation methods GBLUP and BayesB, (iii) the prediction

accuracy for hybrids for which two, one or no parent(s) had

been evaluated in other hybrid combinations, and (iv) the

prediction accuracy on different levels of marker density and

under convergent and divergent parental populations. For

this, we used genomic data from an ongoing maize breeding

program and simulated phenotypes.

Methods

Models

Model U1 considers only additive effects, modeled as

unspecific to a population,

y ¼ 1lþ ðZd þ Zf Þuþ e; ð1Þ

where l is the intercept (and 1 a column vector of 1s), y is

a N 9 1 (N : no. observations) vector of phenotypic

hybrid entry means, adjusted for all other non-genetic

effects, pertaining to the environment or field design. The

vector of random effects of bi-allelic markers u is related to

y through the known incidence matrix ðZd þ Zf Þ which has

dimensions N 9 M (M : no. markers). The elements of

the component matrices Zd and Zf code the presence

(zij = 1/2) and absence (zij = -1/2) of the target allele in

the gametes of the parental dent and flint inbred lines,

respectively, of the corresponding hybrid. Which of the

two alleles was chosen as the target allele was arbitrary,

but the target allele was identical in dent and flint lines.

Note that while Zd and Zf are defined based on the geno-

types of the parental gametes, ðZd þ Zf Þ reflects the

genotype of the F1 hybrid and is coded as 1 and -1 for the

two homozygous genotypes and 0 for the heterozygous

genotype. Finally, e is the residual vector.

Model U2, extends U1 by dominance effects,

y ¼ 1lþ ðZd þ Zf Þuþ Dd þ e ð2Þ

where matrix D ¼ �2ðZd � Zf Þ þ 1
2

J; with J being a

N 9 M matrix containing only 1s and � denoting element-

wise multiplication. Thus, D codes heterozygous genotypes

as 1 and homozygous genotypes as 0, in harmony with the

F1 metric commonly used in textbooks on quantitative

genetics (e.g., Falconer and Mackay 1996). The vector d

contains the random dominance effects.

Model S1 is again an additive model. However, this time

we model the marker effects as specific to the population of

origin,

y ¼ 1lþ Zdud þ Zf uf þ e: ð3Þ

Vectors ud and uf contain the random marker effects per-

taining to the dent and flint population.

The most complex model S2 extends model S1 by

dominance effects between the marker alleles of the two

populations,

y ¼ 1lþ Zdud þ Zf uf þ Dddf þ e: ð4Þ

While D from model S2 is identical to D from model

U2; ddf 6¼ d in general, because of the different formulation

of additive effects.

Estimation of marker effects

GBLUP

GBLUP marker effects were estimated by solving the mixed

model equations corresponding to models U1, U2, S1 and S2.

The shrinkage factors of marker effects were computed from
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GCA and SCA variance components (see below for details

on the estimation of variance components). For example, the

shrinkage factor for ud was r2
e=ðr2

GCAd=MÞ; where r2
GCAd is

the variance component of GCA effects pertaining to

gametes from the dent pool and re
2 is the residual variance

component. For models U1 and U2, the genetic variance

component for the shrinkage factor of u was pooled. In case

of computationally singular coefficient matrices, we used

the function ‘‘make.positive.definite’’ from R package

‘‘corpcor’’ (Schaefer et al. 2012) to ensure invertability.

BayesB

For sake of brevity, we will give details only for model U1.

The extension to the other models follows straightfor-

wardly by specifying analogous but independent prior

distributions for the added corresponding parameters.

In analogy to Meuwissen et al. (2001), we specified

u�Nð0;GuÞ; where Gu is a diagonal matrix of dimension

M 9 M, with diagðGuÞ ¼ ½r2
u1
; r2

u2
; . . .; r2

uM
�; as our prior

for u: Our prior for the marker specific variance of effects,

r2
ui
; was

pðr2
ui
jmu; S

2
uÞ
¼ 0 with probability pu

¼ v�2ðmu; S
2
uÞ with probability ð1� puÞ;

�

ð5Þ

where mu, Su
2 and pu are hyperparameters. The subscript ‘‘u’’

indicates that the hyperparameters are specific to additive

marker effects u from model U1. For the sake of simplified

notation, we will later on drop the subscript when

discussing the role of these parameters in general and

indicate textually when we refer to a specific case.

Following the suggestions of Yang and Tempelman

(2012), we modeled the hyperparameters mu, Su
2 and pu as

uncertain by assigning hyperprior distributions to them. For

mu, we chose the following prior:

pðmuÞ / ðmu þ 1Þ�2
if 0\mu\100

¼ 0 else:

�
ð6Þ

We observed better convergence by setting an upper bound

to mu. Furthermore, we specified p(Su
2) = Gamma(aS =

0.1,bS = 0.1). We used a mildly informative prior for

pu, namely p(pu) = Beta(ap = 3, bp = 3), the probability

peak of which is around pu = 0.5, but still gives substantial

probability to 0.1 [ pu [ 0.9.

Finally, our prior for the residual variance was

p(re
2) = v-2(me = -1, Se

2 = 0).

To fit the models, we ran the Gibbs-sampler for 100,000

iterations. The first 25,000 were discarded as burn-in and

only samples from every 30th post burn-in iteration were

stored. These parameters were chosen to ensure an effec-

tive sample size of[100 for the hyperparameters m, S2 and

p. The effective sample size was estimated with the func-

tion ‘‘effectiveSize’’ from the ‘‘coda’’ R package (Plummer

et al. 2010), the functionality of which was also used to

monitor convergence in general.

The Gibbs sampling strategy and fully conditional dis-

tributions (FCD) of all the parameters are described in

detail in Yang and Tempelman (2012). We used the

independence Metropolis–Hastings (MH) algorithm to

sample from the FCD of r2
ui

as described by Yang and

Tempelman (2012), with 5 MH steps. To sample from the

FCD of mu we followed the recommendations of Kizilkaya

et al. (2003) and employed the random walk MH algo-

rithm. The variance of the Normal candidate distribution

was tuned during the burn-in to achieve an acceptance

probability of & 0.45, as suggested by Müller (1991). The

MH sampler was run for 100 steps during burn-in and for

10 steps post burn-in. We used the posterior means of the

marker effects as point estimates to predict the genotypic

values.

Genome

Parents and hybrids

We based our simulations on the single-nucleotide poly-

morphism (SNP) marker genotypes of 100 dent and 100

flint inbred lines from the maize breeding program of the

University of Hohenheim, genotyped with the Illumina

SNP chip MaizeSNP50 (Ganal et al. 2011). Ignoring

residual heterozygosity and mutational events, the phased

marker genotypes of the hybrids can be inferred from the

genotypes of their parental inbred lines. Thus, we created

in silico all possible 10,000 hybrids of the complete fac-

torial of the 100 dent 9 100 flint crosses.

Consequently, in terms of the allele frequency distri-

bution, LD pattern, and population substructure of the two

populations of parent lines and their hybrid population, our

simulations represent the situation encountered in an actual

breeding program.

Marker data

We removed all markers with more than 5 % missing

values, where we treated heterozygous marker genotypes

as ‘‘missing’’ as well. Remaining missing marker geno-

types were imputed using version 3.3.1 of ‘‘BEAGLE’’

(Browning and Browning 2009). Here, we assumed known

haplotype phases, because the lines were regarded to be

fully homozygous. A total of 39,627 markers were subse-

quently available for further analysis.

We investigated the LD structure of the inbred line

populations by fitting second-order natural smoothing
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splines (with \ 80 effective degrees of freedom) onto the

scatterplot of LD (r2) versus physical distance (D) in mega

base pairs (Mbp) between markers on the same chromo-

some. This was done separately within the set of dent lines,

flint lines and across both sets. For the within set LD, all

markers with a minor allele frequency (MAF) [ 0.05 for

this set were considered; for the LD across sets, all markers

with MAF [ 0.05 within both sets were considered.

To investigate the persistence of linkage phases across

the two inbred line populations, we first binned all marker

pairs according to D in 100 discrete bins of & 0.035 Mbp

width. Then we computed the proportion of pairs within

each bin that had the same linkage phase (determined by

the sign of the r statistic) within the dent and flint popu-

lation. We also used second-order natural smoothing

splines (with 5 effective degrees of freedom) on the scat-

terplot of this proportion versus the center values of the

bins.

To visualize the genetic differences between the set of

dent lines and flint lines as well as the population sub-

structure within these populations, we generated a neighbor

joining tree based on the Modified Rogers’ distance (MRD)

between the marker profiles of the lines.

The LD statistics, the neighbor joining tree as well as the

statistics concerning allele frequencies were based on the

full set of 39,627 SNP markers of all lines.

For the simulations, we used only those markers from

the 39,627 remaining ones that segregated in each inbred

line population with MAF [ 0.05. We then reduced the

number of markers to & 10 Mbp-1, 1 Mbp-1, and

0.3 Mbp-1. The resulting number of available markers was

& 5000 (10 Mbp-1 density), & 1450 (1 Mbp-1) and &
580 (0.3 Mbp-1), respectively. Small random frame shifts

were permitted when spacing the markers to allow the set

of markers used for analysis to change from one replication

of the simulations to another.

Traits

From the set T of SNP loci not used as markers, we

identified the subset Td where the allele frequency (of the

same marker allele) in the population of dent lines, pd, and

flint lines, pf, had |pd - pf| [ 0.6 (‘‘divergent’’ parental

populations). Conversely, the subset Tc � T consisted of

those markers with |pd - pf| \ 0.05 (‘‘convergent’’ paren-

tal populations). Henceforth, these two will also be referred

to as ‘‘divergent’’ and ‘‘convergent’’ inter-population

structure scenarios. We then randomly sampled 300 SNP

markers to be assigned as QTL, from either Td or

Tc, depending on the scenario. The restrictions thereby

were that the MAF had to be [ 0.025 in both sets of lines

and the physical distance D between neighboring QTL had

to be [ 0.5 Mbp.

A random subset of 250 of these QTL were assigned

additive (a) and dominance (d) effects, defined according

to Falconer and Mackay (1996). The additive effects were

drawn from a reflected Gamma distribution with parameter

scale = 1.66 and shape = 0.4, as was often used in the

literature, e.g., by Meuwissen et al. (2001). The dominance

effects of these loci were obtained as the product between

the absolute additive effect and the degree of dominance.

The degrees of dominance were drawn from a Normal

distribution with mean 1.0, a value based on experimental

estimates for grain yield in maize (Gardner and Lonnquist

1959; Gardner 1963), and variance 0.75. To the remaining

50 QTL, we assigned pure dominance effects, drawn from

a Normal distribution with mean and variance equal to the

observed mean and variance of the dominance effects of

the 250 other QTL.

After assigning the QTL, we computed the genotypic

values of the 10,000 hybrids by summing the additive and

dominance effects across all QTL. The genotypic values

were then scaled to unit variance and centered to zero

mean.

For computing the GBLUP shrinkage factors, as well as

for interpreting our results in comparison with experi-

mental data from maize, we estimated variance compo-

nents, pertaining to general (GCA) and specific (SCA)

combining ability effects, from a simulated completely

randomized design with two replications, including all

10,000 hybrids. For this, we added a normally distributed

noise variable to the genotypic values of the hybrids to

arrive at a broad sense heritability of h2 = 0.75 on an entry

mean basis, a typically observed value for grain yield and

grain moisture in the maize breeding program of the Uni-

versity of Hohenheim (Schrag et al. 2006). We then fitted

the following model:

yijk ¼ lþ GCAd
i þ GCA

f
j þ SCAi�j þ eijk; ð7Þ

where l is the intercept, yijk is the phenotypic value of a

hybrid between dent line i and flint line j in the kth repli-

cation, GCAi
d is the GCA effect of the ith dent line, GCAj

f

is the GCA effect of the jth flint line, SCAi 9 j the SCA

effect of the hybrid between dent line i and flint line j and

eijk is the residual in the kth replication of hybrid yij. For

simplicity’s sake, we regarded the inbred lines as unrelated.

We used model (7) to estimate the variance components

pertaining to GCA effects of the dent ðr2
GCAdÞ and flint

ðr2
GCAf Þ lines and the SCA ðr2

SCAÞ effects.

Prediction of hybrid performance

A random sample of 75 lines from each population was

taken to be ‘‘evaluated’’ in hybrid combinations in silico, as

illustrated by Fig. 1. Hybrids for which both the dent and
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the flint parent were ‘‘evaluated’’ were assigned to the

‘‘T2’’ set. Hybrids having either the dent or the flint parent

(but not both) as being ‘‘evaluated’’ were assigned to the

‘‘T1’’ set. Finally, hybrids where no parent was ‘‘evalu-

ated’’ were assigned to the ‘‘T0’’ set. A random sample of

N = 800 hybrids from the T2 group was used as the

training population. The number N = 800 was chosen

because it realistically reflects the number of hybrids that

can be evaluated in resource intensive, multi-environment

field trials in a medium-size breeding program. The phe-

notypes of the training hybrids were the entry means over

the two replications of the hybrids created above for esti-

mating variance components. These phenotypic values thus

had h2 = 0.75. The remaining 75 9 75 - 800 = 4825 T2

hybrids were used for validation, as were the

75 9 25 9 2 = 3750 T1 hybrids and the 25 9 25 = 625

T0 hybrids. We evaluated the prediction accuracy sepa-

rately for each validation set by computing the Pearson

correlation between predicted genotypic values, based on

the parental marker genotypes and estimates of the marker

effects, and true genotypic values, based on the QTL

genotypes and the simulated additive and dominance

effects. We used the prediction accuracy as criterion to

assess the model performance.

For each scenario of QTL-allele inter-population struc-

ture and marker density, we generated 50 data sets by

repeating the whole simulation process (i.e., sampling of

‘‘evaluated lines’’, subset of markers, subset of QTL and

their effects and environmental noise). All four models

were fitted by both estimation methods to each data set,

which therefore acted as a blocking factor and allowed to

compare the observed prediction accuracies with paired

t tests. We also computed the average accuracy for a data

set by averaging over the values observed for the four

models. We then used the standard deviation (SD) of these

average accuracies as a measure of variability of the data

sets, within a factor combination, i.e. the variability

attributable to random sampling effects.

We conducted an analysis of variance to assess the

influence of the factors: marker density, inter-population

structure, validation group, estimation method, inclusion of

dominance effects (‘‘yes’’ or ‘‘no’’), inclusion of popula-

tion-specific effects (‘‘yes’’ or ‘‘no’’), and all two-way

interactions between these on the prediction accuracies.

The data set (i.e., the replications of the simulation) was

included as a factor as well; it acted as a blocking factor for

all factors related to model/method choice. We used t tests

to evaluate the significance of differences between means

of factor levels of interest to us. Thereby we used the data

set as a blocking factor when appropriate. All reported

differences were significant with p \ 0.05, unless noted

otherwise.

All computations were performed in the R statistical

environment (R Development Core Team 2011). Model

(7) was fitted with the ‘‘lme4’’ R package (Bates et al.

2011). The neighbor joining tree was generated with the

package ‘‘ape’’ (Paradis et al. 2004). The natural splines

were fitted with package ‘‘pspline’’ (Ramsey and Ripley

2010). BayesB was implemented as a C program inte-

grated to R.

Results

Results related to observed genomic data

Allele frequency distribution

The average MAF was 0.185 within the dent lines and

0.135 within the flint lines. The proportion of markers with

MAF \ 0.05 (\ 0.025) was 0.344 (0.255) within the dent

lines and 0.441 (0.312) within the flint lines. The MAF

within the dent lines was almost evenly spread across the

whole value range (Fig. 2a), while they were more con-

centrated at lower values within the flint lines (Fig. 2b).

The density of the distribution of absolute differences in

allele frequencies (|pd - pf|, for markers segregating in

both populations) had its peak at values close to zero and

then declined with increasing values for the difference

(Fig. 2c).

Fig. 1 Schematic visualization of the division of the complete

factorial into T2, T1, and T0 hybrids as well as the training set. The

‘‘evaluated’’ lines are a random sample of 75 dent and 75 flint lines

from the whole set of 100 lines within each population. Hybrids,

where both parents are ‘‘evaluated’’ belong to the T2 group, those

where only one parent is ‘‘evaluated’’, to the T1 group, and those

where no parent is ‘‘evaluated’’, to the T0 group. A random sample of

800 hybrids from all 5625 T2 hybrids was used for training (indicated

as asterisks). These were consequently excluded from the T2 group

Theor Appl Genet (2012) 125:1181–1194 1185
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Population structure and LD

In a neighbor joining tree, the two sets of inbred lines

formed two distinct groups, with only few intermediate

genotypes (Fig. 3). The set of flint lines was more struc-

tured than the set of dent lines.

The second-order natural smoothing spline fits of pair-

wise LD (measured as r2) versus physical distance D in

Mbp between two markers showed very strong LD between

markers for D\0:25 Mbp, within the set of dent lines

(r2 [ 0.30), within the set of flint lines (r2 [ 0.35) and

across the combined set of both dent and flint lines

(r2 [ 0.25) (Fig. 4a). The decline in LD was rather steep

up to D 	 0:5 Mbp and slowed down considerably for

greater distances. Beyond D ¼ 1:5 Mbp, the LD remained

almost constant at values of around r2 = 0.2, for the whole

range of D values considered. The LD across the sets of

lines was generally lower than within the sets. For the

whole range of D; LD within the set of flint lines was

higher than within the set of dent lines (Fig. 4a).

The second-order natural smoothing spline fit for the

proportion of marker pairs with the same linkage phase in

both sets of lines versus D showed a trend similar to the

curves for the LD. For marker pairs with D\0:25 Mbp,

this proportion was greater than 0.7 (Fig. 4b). It then

declined to a value of & 0.575, where it remained almost

constant.

Results related to simulations

Variance components

The ratio of SCA variance versus GCA variance,

r2
SCA=ðr2

GCAd þ r2
GCAf Þ; was 0.069 for the ‘‘divergent’’

scenario and 0.243 for the ‘‘convergent’’ scenario (aver-

aged over all data sets pertaining to the corresponding

scenario).

Prediction accuracies

The prediction accuracies averaged over all 50 replications

ranged from 0.65 to 0.95 (Table 1). The lowest value was

observed for ‘‘convergent’’ parental populations in the T0

validation group for 0.3 Mbp-1 marker density and model

U1. The highest values were obtained for several cases of

‘‘divergent’’ parental populations in the T2 validation

group.

Due to the high number of degrees of freedom, all

factors had a significant influence as determined in the

analysis of variance (supplemental Table 1). The only

exceptions were the two-way interaction between method
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Fig. 2 Histogram of MAF within the set of dent (a) and flint (b) lines

and histogram of |pd - pf| (c), where pd and pf is the frequency of

corresponding alleles within the set of dent and flint lines, respec-

tively. Histograms (a) and (b) contain only markers with a MAF

[0.025 in the corresponding set of lines, histogram (c) only markers

with a MAF[0.025 within both line populations, from the whole set

of 39,627 SNP markers

Fig. 3 Neighbor joining tree based on the Modified Rogers distance

between the marker genotypes of the inbred lines. Lines from the dent

population are indicated in red, lines from the flint population in blue
(color figure online)
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and inclusion of population-specific effects and the inter-

action between inclusion of population-specific effects and

inclusion of dominance effects.

The average observed prediction accuracies obtained with

BayesB were with 0.006 significantly higher than those of

GBLUP. While there was no significant difference for

models that did not include dominance effects (U1 and S1),

the difference between BayesB and GBLUP was 0.012 and

significant for models that included dominance (U2 and S2).

In certain situations, the differences could be substantial

(Table 1). For example, with ‘‘convergent’’ parental popu-

lations and marker density 10 Mbp-1, the difference

between BayesB and GBLUP was 0.024 for models incor-

porating dominance. For this reason, the following presen-

tation will focus on the results obtained with BayesB.

Irrespective of other factors, the prediction accuracies

were higher by 0.088 under ‘‘divergent’’ than under the

‘‘convergent’’ parental populations. The mean prediction

accuracy for the T0 validation group was by 0.073 lower

than that of the T1 validation group and by 0.137 lower

than that of the T2 group. The mean accuracy rose from

0.822 with 0.3 Mbp-1 density to 0.842 (1 Mbp-1) to 0.850

(10 Mbp-1).

Models incorporating dominance effects (U2 and S2)

yielded a mean accuracy that was significantly higher by

0.026 than their only additive counterparts (U1 and S1).

While always statistically significant, the differences in

means increased with increasing marker density (for

example, 0.021 under 0.3 Mbp-1 density versus 0.031

under 10 Mbp-1 density) and from T2 to T0 (0.023 for T2

vs. 0.028 for T0). They were further larger under the

‘‘convergent’’ scenario than under the ‘‘divergent’’ scenario

(0.039 vs. 0.013).

The overall mean accuracy of models incorporating

population-specific effects, S1 and S2, over models that did

not, U1 and U2, was by 0.005 points significantly higher.

The superiority of the specific models was generally

smaller under the ‘‘convergent’’ scenario compared with

the ‘‘divergent’’ scenario (0.002 vs. 0.008). At a marker

density of 10 Mbp-1, these models yielded even slightly

inferior accuracies than their unspecific counterparts in

some cases (Table 1). For the ‘‘divergent’’ scenario, the

superiority of models S1 and S2 generally increased with

decreasing marker density (from 0.004 at 10 Mbp-1 to

0.012 at 0.3 Mbp-1) and from the T2 to T0 validation

groups (0.001 for T2 vs. 0.015 for T0).

The SD of average (over models) prediction accuracies

of data sets ranged from &0.1 to &0.01 (Table 1). It was

generally higher under the ‘‘convergent’’ scenario than

under the ‘‘divergent’’ scenario and decreased from T0 to

T2. There was no obvious trend for the SD regarding the

marker density.

Discussion

Observed genomic data

Allele frequency distribution

The more extreme distribution of MAF in flint compared

with dent lines (Fig. 2) and the much higher proportion of

MAF close to zero indicate that the flint population used

was much more narrow in terms of allelic diversity than the

dent population.

Similar to other maize breeding programs in Central

Europe, the flint germplasm of the University of Hohen-

heim largely traces back to a relatively small number of

first cycle lines extracted from European landraces (Fischer

et al. 2008), the most prominent examples being the French

lines F2 and F7 developed from Lacaune, the Spanish line

EP1 developed from Lizagarotte, and the German line

DK105 developed from Gelber Badischer. The first cycle

lines were subsequently subject to intensive recycling

(a)

(b)

0.6

Fig. 4 (a) Second-order smoothing spline fits of LD (r2) versus

distance (D) in mega base pairs (Mbp) between markers on the same

chromosome, within the set of dent lines (full line), flint lines (dashed
line), and across both sets (dotted-dashed line). For the within set LD,

all markers with a minor allele frequency (MAF) [0.05 for this set

were considered; for the LD across sets, all markers with MAF[0.05

within both sets were considered. (b) Second-order smoothing spline

fits of proportion of marker pairs with equal linkage phase

(determined as equality of sign of r statistic) versus D between

markers on the same chromosome. The horizontal dotted-dashed line
indicates the value 0.5
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breeding with occasional introgression of exotic flint

germplasm from tropical or subtropical CIMMYT germ-

plasm or introgression of modern Lancaster lines from

North America, but to a large extent, the flint germplasm

pool was kept close. By comparison, the dent material

traces back to numerous landraces and sources from North

America used at the beginning of the era of hybrid breeding

in Europe in the 1950s (Fischer et al. 2008). The main

source was germplasm with Reid Yellow Dent background,

but there was from the beginning a steady flow of germ-

plasm from North American breeding programs that served

as a continuous source for broadening the dent heterotic

pool. Moreover, it was not uncommon to extract new dent

inbreds by selfing late-maturing pure dent hybrids culti-

vated in Southern Europe. Thus, the history of the hybrid

breeding program of the University of Hohenheim can well

explain the observed differences in allele frequency dis-

tributions between the dent and flint heterotic pools.

However, we acknowledge that these results might be

influenced by the reported ascertainment bias in the Illu-

mina SNP chip MaizeSNP50 (Ganal et al. 2011), which

can lead to an underestimation of diversity in germplasm

not well represented by the SNP discovery and selection

process. Assessment of an ascertainment bias could be

achieved by comparison of the SNP marker data with other

marker systems such as Simple Sequence Repeats (SSR),

as performed by Van Inghelandt et al. (2010).

Surprisingly, the differences in allele frequencies |pd - pf|

between the dent and flint populations were in most cases

not extreme (Fig. 2c). This was unexpected given the long

history of separate evolution of the dent and flint germ-

plasm and the relatively small effective population size

practiced in each heterotic pool that would be expected to

result in rather diverse allele frequencies based on random

genetic drift alone. Nevertheless, it must be kept in mind

that markers monomorphic in one or both of the pools were

disregarded in our study by excluding SNP with MAF

\ 0.025 for the analysis. Despite the rather small differ-

ences, the two populations were found to be genetically

clearly distinct (Fig. 3).

LD

We observed high levels of LD within the two populations

compared with observations from other studies in maize.

For example, Riedelsheimer et al. (2012) found that r2

declined below 0.1 already after & 0.5 Mbp in a set of

diverse dent inbred lines. In a situation more comparable to

Table 1 Prediction accuracies for hybrids obtained with estimation method BayesB and GBLUP for various validation groups (T0, T1, T2),

under the four models (U1, U2, S1, S2), and the ‘‘convergent’’ and ‘‘divergent’’ inter-population structure, for various marker densities (10, 1, and

0.3 Mbp-1), averaged over 50 data sets

Marker

density

Inter-population

structure

Validation

group

BayesB GBLUP

Unspecific Specific SD Unspecific Specific SD

U1 U2 S1 S2 U1 U2 S1 S2

10 Mbp-1 convergent T0 0.715a 0.764b 0.704c 0.760b 0.089 0.708a 0.734b 0.710a 0.738c 0.093

T1 0.798a 0.842b 0.791c 0.840b 0.050 0.794a 0.817b 0.793a 0.818b 0.057

T2 0.861a 0.907b 0.860c 0.907b 0.036 0.862a 0.884c 0.859b 0.883c 0.042

divergent T0 0.816a 0.837b 0.831b 0.838b 0.050 0.817a 0.821b 0.828c 0.830c 0.056

T1 0.879a 0.895b 0.885c 0.896b 0.022 0.879a 0.882b 0.884bc 0.904c 0.026

T2 0.935a 0.947b 0.936c 0.948b 0.007 0.935a 0.938a 0.934b 0.937ab 0.009

1 Mbp-1 convergent T0 0.703a 0.742b 0.713c 0.746b 0.078 0.704a 0.722b 0.709a 0.727b 0.087

T1 0.784a 0.82b 0.789c 0.822b 0.046 0.785a 0.801b 0.785a 0.803b 0.051

T2 0.855a 0.890b 0.855a 0.890b 0.036 0.855a 0.870b 0.852c 0.869d 0.040

divergent T0 0.805a 0.829b 0.822b 0.836c 0.057 0.819a 0.823b 0.833c 0.838d 0.050

T1 0.873a 0.890b 0.881c 0.894d 0.025 0.878a 0.881b 0.884b 0.888c 0.028

T2 0.934a 0.945b 0.936c 0.946d 0.008 0.934a 0.936ab 0.933b 0.936ab 0.012

0.3 Mbp-1 convergent T0 0.651a 0.688b 0.666c 0.700d 0.102 0.655a 0.679b 0.676b 0.697d 0.102

T1 0.753a 0.785b 0.760c 0.791d 0.062 0.755a 0.778b 0.762c 0.785d 0.061

T2 0.840a 0.870b 0.841c 0.871d 0.043 0.839a 0.862b 0.835c 0.860d 0.046

divergent T0 0.796a 0.813b 0.826c 0.831c 0.061 0.799a 0.806b 0.828c 0.833d 0.061

T1 0.865a 0.877b 0.879b 0.886c 0.030 0.866a 0.871b 0.878c 0.883d 0.030

T2 0.933a 0.941b 0.935c 0.943d 0.010 0.932a 0.936b 0.931c 0.936b 0.011

The standard deviations (SD) of 50 average prediction accuracies (averaged over models) are shown in the last column

Values followed by identical letters within a row and estimation method are not statistically different in paired t tests for p \ 0.05
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ours, Van Inghelandt et al. (2011) found a similar decline

within commercial flint and dent germplasm. In our

material, the LD within populations at 0.5 Mbp was con-

siderably higher than observed in these studies. Further-

more, in contrast to the studies mentioned above, we

observed strong long range LD, with r2 [ 0.15 even after

3 Mbp (Fig. 4a). However, in concordance with our

results, Albrecht et al. (2011) found strong long-range LD

within a commercial population of dent lines, with a con-

siderable proportion of marker pairs showing r2 [ 0.1 even

after 50 Mbp.

The consistently higher LD for the flint population in

comparison with the dent population (Fig. 4) can also be

attributed to the breeding history of each pool recapitulated

above and corroborates that the flint heterotic group was

kept more secluded than the dent heterotic group. Fur-

thermore, the current flint germplasm might still exhibit

traces of the population substructure created at the outset

by using lines from distinct landraces and/or by inclusion

of Lancaster germplasm. This residual population sub-

structure might then have caused admixture LD. Remains

of residual population substructure might be visible in the

neighbor joining tree in Fig. 3, which shows a somewhat

more defined structuring within the flint lines compared to

within the dent lines.

A direct result of the narrow base of the European flint,

and, to a lesser extent, the European dent population, the

heavy reliance on recycling breeding, and the low effective

population sizes within breeding materials is that many of

the inbred lines within a population are in fact closely

related. Therefore, they share large genome portions

identical by descent. This constitutes another source of the

large LD observed within populations.

We also observed strong LD across the two populations

(Fig. 4a). While always lower than the LD within popu-

lations, it was still considerably higher than the LD levels

observed by Riedelsheimer et al. (2012) and Van Inghe-

landt et al. (2011). LD across populations is a function of

two factors: LD within each of the populations and

admixture LD arising from differences in allele frequencies

(Charcosset and Essioux 1994). The strong LD across

populations observed in our study will largely be an effect

of the latter cause, given that the differences in allele fre-

quencies observed are distinctly different than zero for

many markers (Fig. 2c). LD within populations can only

contribute to LD across populations when the linkage

phases are identical in both populations. Given the long

separation of the two populations and the random nature of

events that create LD, one would expect about 50 % of

marker pairs with identical linkage phase in both popula-

tions. Consequently, the higher proportion of marker pairs

with identical sign of the LD in dent and flint lines was

surprising (Fig. 4b). Thus, not only population admixture,

but also LD within populations contributed to the LD

across populations.

Simulations

Variance components

The almost four times higher ratio r2
SCA=ðr2

GCAd þ r2
GCAf Þ

under the ‘‘convergent’’ scenario compared with the

‘‘divergent’’ scenario is in harmony with the theoretical

results of Reif et al. (2007). They found that the impor-

tance of rSCA
2 compared to rGCA

2 declines with increasing

divergence of the two parent populations used in hybrid

breeding. This is mirrored in our simulations where the

subset of possible QTL for the ‘‘divergent’’ scenario (Td)

corresponds to markers with distinctly different allele fre-

quencies in both populations and the subset for the ‘‘con-

vergent’’ scenario (Tc) corresponds to markers with very

similar allele frequencies. Overall, the ratios of variance

components obtained from our simulation matched, for

both scenarios, the ratios observed for grain yield and grain

moisture in the maize breeding program of the University

of Hohenheim very well (Schrag et al. 2006).

Prediction accuracies

Marker density and QTL scenario

The prediction accuracies increased with increasing marker

density, as expected (Table 1). However, the differences

between the accuracies observed for a marker density of

10 Mbp-1 and the 30 times lower density of 0.3 Mbp-1 were

only moderate. This is most likely attributable to the strong

long-range LD observed in both parent populations and

across populations (Fig. 4) and suggests that useful screens

of genotypes could be conducted with low-density chips

already, for the type of material investigated here. Such chips

may be produced with much lower costs than the present

high-density chips. This would enable screening the huge set

of new doubled haploid (DH) lines (about 10,000 per het-

erotic group) generated anew in each breeding cycle, which

is currently too costly even with the relatively low costs of

the high density chip employed in our study.

The prediction accuracies observed for the ‘‘conver-

gent’’ and ‘‘divergent’’ parental populations can reflect

different stages in a hybrid breeding program. While the

‘‘convergent’’ scenario corresponds to the very beginning,

where the heterotic groups have still similar allele fre-

quencies, the ‘‘divergent’’ scenario should reflect the situ-

ation at more advanced stages, where the allele frequencies

have more diverged as result of reciprocal recurrent

selection (Labate et al. 1999). One explanation for the

Theor Appl Genet (2012) 125:1181–1194 1189

123



consistently lower prediction accuracies for the ‘‘conver-

gent’’ scenario is the greater importance of rSCA
2 . In the

absence of epistasis, as assumed in our study, SCA is

exclusively attributable to dominance effects (Reif et al.

2007). Dominance effects, representing higher order

effects, are more difficult to estimate than additive effects

and thus reduce prediction accuracy. The greater impor-

tance of rSCA
2 might also reduce the impact of identical

copies of gametes in the training set and T2 and T1 vali-

dation groups, because in this case the specific combination

of the gametes in a hybrid will become more important.

Validation groups

As expected, the largest difference in the prediction accu-

racies were observed between the three validation groups

T2, T1, and T0, irrespective of the setting for the other

factors. All gametes produced by a fully homozygous line

are identical. Therefore, all hybrids with the same parental

inbred line on the dent or flint side, share identical copies

of the parental gametes. Technically, they are half-sibs

from a fully homozygous parent. Hybrids from the T2

group have on average about ten half-sibs with a common

dent and a common flint parent in the training population.

In other words, both of their gametes are represented with

multiple identical copies in the training population. The

genotypic values of T2 hybrids can therefore be predicted

with very high accuracy; in some cases, the accuracy

reached almost 0.95, i.e., &90 % of the genetic variance

could be explained (Table 1). The above mentioned GCA

effects can be seen as main effects of the dent and flint

gametes. Given the preponderance of the GCA variance

over the SCA variance, the fact that the gametic copies are

found in different combinations in the training set than in

the remaining T2 set, has little impact because accuracy

will largely depend on the prediction of additive effects. In

fact, we would expect similarly high accuracies when using

the estimated GCA effects from a model such as (7).

Hybrids from the T1 group have only one gamete (either

from the dent or the flint side) represented by identical

copies in the training set. Consequently, their prediction

accuracy was intermediate between the T2 group and the

T0 group, which is not represented by identical copies of

gametes in the training set at all.

Estimation methods GBLUP and BayesB

The same general trends for the prediction accuracy in terms

of relative model performance as well as in terms of factors

such as marker density were observed for both estimation

methods, GBLUP and BayesB. Thus, the choice of estima-

tion method was clearly not critical for obtaining our results.

Overall, both methods yielded high prediction accura-

cies, with practically no difference under the additive

models U1 and S1 (Table 1). However, we observed that

BayesB could outperform GBLUP when the best models

U2 and S2 were used, i.e., when dominance effects were

included. When focusing only on these models, and on the

most relevant and interesting scenarios (T0 with 10 Mbp-1

density), the differences were with 0.026 (‘‘convergent’’

inter-population structure) and 0.012 (‘‘divergent’’ inter-

population structure) sizable and significant. This leads to

the conclusion that BayesB succeeded better in estimating

dominance effects than GBLUP.

As follows from the formulation of GBLUP, additive

(u; ud and uf ) as well as dominance ðd; ddf ) effects were

evenly shrunken towards zero with no magnitude differ-

ences in effect sizes. Interestingly, while BayesB followed

this pattern for the additive effects, whose estimates were

very similar to those of GBLUP, it differed considerably

for dominance effects. With BayesB, the dominance effects

of most markers were shrunken extremely towards zero. In

some cases, only few markers with sizable dominance

effects remained per chromosome. Indeed, for dominance

effects, BayesB tended towards solutions typical for

Bayesian adaptive shrinkage methods (Li and Sillanpää

2012; Xu 2003). Supplemental Figure 1 depicts the marker

effect estimates obtained by GBLUP and BayesB for a

representative example.

These observations were also mirrored on the level of

the hyperparameters m, p and S2, which appear in Eq. (5).

The posterior estimate of the parameter p gives the prob-

ability of marker effect variances equal to exactly zero,

which leads to marker effects of exactly zero as well. The

posterior estimate of m quantifies the dependence of the

individual marker effect variances on the typical value,

which is given by the posterior estimate of S2. The higher

m, the higher the dependence and the smaller the deviations

from S2.

For example, for ‘‘convergent’’ parental populations

with marker density 10 Mbp-1 and model S2, the posterior

means of m, averaged over the 50 replications, were 4.95,

9.65 and 8.97 for dominance effects and additive effects

pertaining to the dent and flint pool, respectively. Here, the

differences between m for dominance and for additive

effects were significant. Thus, the dependence of the

marker effect variances on S2 (posterior estimates always

around 0.0004) was low for dominance effects, which

allowed for some large and many tiny variances and

therefore for adaptive shrinkage of marker effects. For

variances of additive effects, the inverse Chi-square part of

the prior mixture distribution in Eq. (5) had an almost 10

times lower variance and thus forced all individual marker

effect variances to stay in the vicinity of the typical value
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S2, when they were not exactly zero. Similar, but less

obvious trends were observed for posterior estimates of p.

Under the same scenario as above, the posterior means of

p, averaged over the 50 replications, were with 0.617 sig-

nificantly higher for dominance effects, than the posterior

means of p for additive effects, which were 0.566 and

0.556 for effects pertaining to dent and flint lines respec-

tively. Thus, dominance effects had a prior probability to

be shrunken to exactly zero that was approximately five

percentage points higher than for additive effects.

Both p and m can control model sparsity, p in a way

similar to an indicator variable and m by allowing for

adaptive shrinkage. As observed by Pikkuhookana and

Sillanpää (2009), compared to adaptive shrinkage, the

influence of an indicator variable on overall sparsity is

small when both sources are used simultaneously. This

might explain why the differences for p were relatively less

relevant than the differences for m.

As argued by Yang and Tempelman (2012), specifying

hyperprior distributions on the key hyperparameters allows

them to be estimated from the data, which in turn allows

BayesB to converge to the optimal solution, when a suffi-

cient amount of data is used. For example, when p tends

towards zero and m becomes large, the solutions of BayesB

would approximate those of GBLUP. Our results suggest

that a GBLUP like model provided close to optimal solu-

tions for additive effects but not necessarily for dominance

effects. This property of BayesB, when formulated as

suggested by Yang and Tempelman (2012), obviates the

need to include GBLUP as a reference when a direct

comparison of these methods is not a main objective.

Computationally, BayesB is considerably more

demanding than GBLUP. However, as long as computa-

tions are feasible at all, computation time is a critical issue

only when the computations have to be repeated many

times, e.g., in elaborate simulation or cross-validation

studies. When genomic prediction is just an intermediate

step in a breeding program or academic study, the algo-

rithm needs to be run only for a few times, maybe even

only once. Then computation time will be less an issue

when judging the relative preference of a method. Fur-

thermore, the high computational demand for BayesB

mainly stems from the high number of iterations used. We

used these high numbers only as a safeguard to ensure

convergence and high effective sample sizes on all

parameters of interest. However, we observed that virtually

identical results in terms of predicted genotypic values

could be obtained when using only a fraction of the number

of iterations (say 2,000 iterations with burn-in length of

1,000). Thus, when inference on individual parameters is of

less interest, as is most often the case in genomic prediction

studies, the computation time of BayesB could be dra-

matically reduced by lowering the number of iterations.

To summarize, BayesB yielded higher prediction accu-

racies than GBLUP under the best models and in the most

relevant scenarios, and proved to be flexible enough to

converge to an optimal solution for all types of effects.

Based on our results, we can therefore recommend its use,

despite its higher computational demands. For this reason,

and because the general trends were similar for both

methods, the following section on model comparison will

focus on the results obtained with BayesB.

Model comparison

In order to esteem the observed differences between the

models for a given combination of the other factors ana-

lyzed, we emphasize again that the data set acted as a

blocking factor common to all models. The comparatively

large fluctuations (measured as SD) in baseline accuracy

between data sets (Table 1) therefore did not enter in the

comparison of the differences between the models. In other

words, even though the overall prediction accuracy was

fluctuating across different runs, the in most cases signifi-

cant differences between the models suggest that the rela-

tive superiority of the models vis-a-vis each other was

stable.

Even though the importance of rSCA
2 compared to that of

r2
GCAd þ r2

GCAf was low, incorporating dominance effects

into the model improved the prediction accuracies in all

cases (Table 1). The greater improvement under the

‘‘convergent’’ scenario than under the ‘‘divergent’’ scenario

can be explained by the increased importance of rSCA
2 in

the former case. The greater improvement with higher

marker density (Table 1) suggests that estimation of

dominance effects of markers profits relatively more from

an increase in LD than the estimation of additive marker

effects.

Modeling marker effects specific to a population (i.e.

models S1 and S2) led generally to higher prediction

accuracies than observed for models, where marker effects

were population unspecific (i.e., models U1 and U2)

(Table 1). However, the differences were only moderate

and not in all cases statistically significant. The good per-

formance of the unspecific models can be explained with

the high LD across populations and the high congruency of

linkage phases for loci pairs in close proximity (Fig. 4).

Consequently, the largest differences between the two

model classes were observed for a marker density of

0.3 Mbp-1, a situation in which the LD across populations

is at a considerably lower level than the LD within the

populations, and the proportion of marker pairs with

identical linkage phases in both populations is close to

50 %. For a marker density of 10 Mbp-1, entailing a dis-

tance between markers and QTL \ 0.1 Mbp in the
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simulations, both the LD across populations and the pro-

portion of pairs with identical linkage phases were at a very

high level. Moreover, models S1 and S2 require the esti-

mation of a greater number of marker effects, which may

reduce their estimation accuracy and thus acts as a penalty.

The larger differences between the four models under

‘‘divergent’’ parental populations could also be ascribed to

LD. In our simulations, we determined the proportion of

pairs of QTL and closest adjacent markers with identical

linkage phase in both populations and found slightly lower

values under the ‘‘divergent’’ scenario compared to what

was found under the ‘‘convergent’’ scenario (data not

shown). This could explain why it might be more beneficial

to model marker effects as population specific under that

scenario.

Our work has some parallels to a study conducted by

Ibánez-Escriche et al. (2009) in the context of beef cattle

breeding. They used BayesB for fitting models with breed-

specific and unspecific additive marker effects to simulated

crossbred data sets. Their ultimate goal was to use the

marker effects for selection in the purebred parental pop-

ulations. Their main results are in close agreement with

ours, in that the differences between models in prediction

accuracy were small; if the specific models had an

advantage, then only under lower marker densities. How-

ever, there are rather fundamental differences between the

situation encountered in beef cattle and hybrid maize

breeding. In the latter case, the ultimate goal is not selec-

tion of parental genotypes but the identification of high-

performing hybrids as such. Furthermore, the genetic

makeup of the populations simulated by Ibánez-Escriche

et al. (2009), and that of beef cattle breeding programs in

general, differ fundamentally from the situation encoun-

tered in hybrid maize breeding and simulated by us. First,

maize hybrids share identical copies of gametes with other

hybrids and with their parents. Second, dominance is an

important factor contributing to yield in maize hybrids.

However, dominance was not considered as a factor by

Ibánez-Escriche et al. (2009).

In summary, modeling marker effects as population

specific was most beneficial under lower LD levels, as

might be observed in diverse or exotic material (Riedels-

heimer et al. 2012; Yan et al. 2009). In this study, the

specific models had an clear advantage up to a marker

density of 1 Mbp-1 (Table 1), i.e., up to an LD level

between neighboring markers of r2 [ 0.225 within and

r2 \ 0.175 across populations (Fig. 4a). Such levels of LD

can easily be attained in the type of populations investi-

gated here. However, reaching such levels of LD between

neighboring markers would require SNP chips with much

higher density or even whole sequence data for more

diverse or exotic germplasm (Riedelsheimer et al. 2012;

Yan et al. 2009).

Compared with other factors, such as the type of

material to predict (T2, T1 or T0), the differences in pre-

diction accuracy due to choice of model were rather small.

Nevertheless, the differences were still sizable in most

cases. Especially, the improvements achieved by incorpo-

rating dominance effects were large enough to be of

practical importance. Furthermore, the choice of a more

complex model is not associated with any additional costs.

Therefore, also smaller gains in accuracy can be exploited

for free.

Viewing the prediction accuracy as criterion for choice

of the best model, we conclude that models incorporating

dominance and population specific marker effects can

provide better fits to the data than simpler models.

Implications for hybrid breeding

The square root of h2 can be seen as the phenotypic

equivalent of the prediction accuracy. It corresponds to the

accuracy of predicting the genotypic value of hybrids from

their phenotypes alone, without using any genomic or

pedigree information. To put our results in perspective with

the current approach in hybrid breeding, we therefore have

to compare the observed prediction accuracies withffiffiffiffiffi
h2
p

¼ 0:866:

Focusing on model S2 with effects estimated by BayesB,

the prediction accuracy of T2 hybrids was always consid-

erably higher than h = 0.866. This suggests that the

genomic predicted genotypic values of T2 hybrids can be

more accurate than prediction based on field trial data.

Given the significantly higher accuracies when incorpo-

rating dominance effects, we further note that genomic

prediction of T2 hybrids is also more accurate than GCA

based prediction, which cannot accommodate for SCA.

This is irrespective of whether the GCA values of the

parental lines were obtained from field data or are

themselves genomic predictions (Albrecht et al. 2011;

Riedelsheimer et al. 2012).

Because 3/4 of the lines in our simulation were ‘‘eval-

uated’’, the T2 group was by far the largest of the three

groups. At present, large breeding companies generate up

to 10,000 DH lines per year and heterotic pool (Melchi-

nger, personal communication). With these dimensions, the

proportion of ‘‘evaluated’’ lines will be much smaller and

the T1 and T0 groups will dominate the factorials.

The prediction accuracies observed for the T1 group

with model S2 were under the ‘‘divergent’’ scenario always

higher than h = 0.866 and under the ‘‘convergent’’ sce-

nario close to h = 0.866 for high LD levels (Table 1).

Thus, promising T1 hybrids too could be identified with

high accuracy using genomic prediction alone. Even for T0

hybrids, the prediction accuracies were not dramatically

lower than h = 0.866 at high LD levels (Table 1).
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It would be interesting to compare our results with

predictions of hybrid performance based on pedigree

information, as proposed by Bernardo (1996). However,

pedigree information was not available for all our lines and

not complete or reasonably deep for the remainder.

It need to be noted that practitioners are unlikely to

solely rely on genomic predictions of hybrid performance.

Therefore, implementing genomic prediction holds most

promise as an initial stage in a multi-stage selection

scheme. Accordingly, the number of available parental

lines could be reduced to the parents of the most promising

hybrids, based on the genomic prediction of their hybrid

performance. This could be coupled with genomic pre-

diction of line per se performance for resistance traits or

traits related to the economics of seed production. In a

second stage, promising experimental hybrids from facto-

rial crosses of the remaining lines could then be evaluated

in extensive field trials. As a side product, these field-

evaluated experimental hybrids could be used to update

and extend the training set. Further research is warranted to

confirm our simulation results with experimental pheno-

typic data.
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